Complex Fuzzy Sets and Complex Fuzzy Logic an Overview of Theory and Applications
نویسندگان
چکیده
Fuzzy Logic, introduced by Zadeh along with his introduction of fuzzy sets, is a continuous multi-valued logic system. Hence, it is a generalization of the classical logic and the classical discrete multi-valued logic (e.g. Łukasiewicz’ three/many-valued logic). Throughout the years Zadeh and other researches have introduced extensions to the theory of fuzzy setts and fuzzy logic. Notable extensions include linguistic variables, type-2 fuzzy sets, complex fuzzy numbers, and Z-numbers. Another important extension to the theory, namely the concepts of complex fuzzy logic and complex fuzzy sets, has been investigated by Kandel et al. This extension provides the basis for control and inference systems relating to complex phenomena that cannot be readily formalized via type-1 or type-2 fuzzy sets. Hence, in recent years, several researchers have used the new formalism, often in the context of hybrid neuro-fuzzy systems, to develop advanced complex fuzzy logic-based inference applications. In this chapter we reintroduce the concept of complex fuzzy sets and complex fuzzy logic and survey the current state of complex fuzzy logic, complex fuzzy sets theory, and related applications.
منابع مشابه
Applications of Fuzzy Program Graph in Symbolic Checking of Fuzzy Flip-Flops
All practical digital circuits are usually a mixture of combinational and sequential logic. Flip–flops are essential to sequential logic therefore fuzzy flip–flops are considered to be among the most essential topics of fuzzy digital circuit. The concept of fuzzy digital circuit is among the most interesting applications of fuzzy sets and logic due to the fact that if there has to be an ultimat...
متن کاملComplex fuzzy Hv-subgroups of an Hv-group
The concept of complex fuzzy sets is a generalization of ordinary fuzzy sets. In this paper, we introduce the concept of complex fuzzy subhypergroups ($H_{v}$-subgroups) as well as the concept of complex anti-fuzzy subhypergroups ($H_{v}$-subgroups). We investigate their properties and their relations with the traditional fuzzy (anti-fuzzy) subhypergroups ($H_{v}$-subgroups), and we prove some ...
متن کاملAn Introduction to the Use of Fuzzy Mathematics in Archeology (Case Study: Virtual Reconstruction of Togrul Tower by Using Fuzzy Reliability)
Nowadays, the use of fuzzy mathematics and fuzzy logic are increasing in various sciences. Archaeology is one of the sciences that is less attended with the methods of fuzzy mathematics and fuzzy logic. Due to the nature of many archaeological data, however, the use of such methods in archaeology can be beneficial. In this research, it has been tried to explain applications of fuzzy logic and f...
متن کاملA Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)
Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...
متن کاملAn integrated multi-criteria decision-making methodology based on type-2 fuzzy sets for selection among energy alternatives in Turkey
Energy is a critical factor to obtain a sustainable development for countries and governments. Selection of the most appropriate energy alternative is a completely critical and a complex decision making problem. In this paper, an integrated multi-criteria decision-making (MCDM) methodology based on type-2 fuzzy sets is proposed for selection among energy alternatives. Then a roadmap has been cr...
متن کامل